6 found
Order:
  1.  29
    Bit-string physics: a finite and discrete approach to natural philosophy.H. Pierre Noyes - 2001 - River Edge, N.J.: World Scientific. Edited by den Berg & C. J..
    Introduction Major scientific revolutions are rarely, if ever, started deliberately. They can be "in the air" for a long time before the first recognizable ...
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  2.  39
    Nonperturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations.James Lindesay & H. Pierre Noyes - 2004 - Foundations of Physics 34 (10):1573-1606.
    We here use our nonperturbative, cluster decomposable relativistic scattering formalism to calculate photon–spinor scattering, including the related particle–antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it a unitary two-particle amplitude for quantum–particle scattering. We verify that we have done this correctly by showing that our calculated photon–spinor amplitude reduces in the (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  3.  38
    A Democritean phenomenology for quantum scattering theory.H. Pierre Noyes - 1976 - Foundations of Physics 6 (1):83-100.
    The basic operational devices in a particle theory are detectors which show that a particle is “here, now” rather than “there, then.” Successful operation of these devices requires a limiting velocity. Given auxiliary devices which can change particle velocities in both magnitude and direction, the Lorentz-invariant mass can be defined. The wave-particle duality operationally required to explain the scattering of particles from a diffraction grating then predicts fluctuations in particle number (the Wick-Yukawa mechanism), if we postulate a smallest mass. We (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  57
    A Nonperturbative, Finite Particle Number Approach to Relativistic Scattering Theory.Marcus Alfred, Petero Kwizera, James V. Lindesay & H. Pierre Noyes - 2004 - Foundations of Physics 34 (4):581-616.
    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a nonperturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the nonrelativistic limit to the nonrelativistic Faddeev equations. The aim of this (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  13
    Construction of Non-Perturbative, Unitary Particle–Antiparticle Amplitudes for Finite Particle Number Scattering Formalisms.James Lindesay & H. Pierre Noyes - 2005 - Foundations of Physics 35 (5):699-741.
    Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle–antiparticle amplitude. This process differs from conventional on-shell Mandelstam s, t, u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel non-perturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  6.  30
    Fixed past and uncertain future: A single-time covariant quantum particle mechanics. [REVIEW]H. Pierre Noyes - 1975 - Foundations of Physics 5 (1):37-43.
    A covariant quantum mechanics for systems of finite-mass particles at finite energy follows from interpreting as Wick-Yukawa fluctuations in particle number the quantum fluctuations which are needed by Phipps to understand measurement theory and by Gyftopoulos to understand the second law of thermodynamics. The dynamical one-variable equations require as input the (N − 1)-particle transition matrices and an N-N vertex or coupling constants at three-particle vertices.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations